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New tuberculosis drug regimens are creating new priorities for drug susceptibility testing (DST) and surveillance. To 
minimise turnaround time, rapid DST will need to be prioritised, but developers of these assays will need better data 
about the molecular mechanisms of resistance. Eff orts are underway to link mutations with drug resistance and to 
develop strain collections to enable assessment of new diagnostic assays. In resource-limited settings, DST might not 
be appropriate for all patients with tuberculosis. Surveillance data and modelling will help country stakeholders to 
design appropriate DST algorithms and to decide whether to change drug regimens. Finally, development of practical 
DST assays is needed so that, in countries where surveillance and modelling show that DST is advisable, these assays 
can be used to guide clinical decisions for individual patients. If combined judiciously during both development and 
implementation, new tuberculosis regimens and new DST assays have enormous potential to improve patient 
outcomes and reduce the burden of disease.

Introduction
Patient care algorithms can be improved in two main 
ways: by rethinking and reorganising existing methods 
and technologies, and by introducing new technologies. 
In recent decades, national tuberculosis programmes 
have used existing technologies more eff ectively than in 
previous decades, achieving substantial results.1 But 
further improvement is restricted by outdated and 
inadequate methods used to fi ght the epidemic: a vaccine 
with limited eff ectiveness; a drug regimen that is long 
and that places substantial demands on patients and 
health-care systems; and a diagnostic technique (smear 
microscopy) that detects only half of all cases and does 
not assess drug resistance of the infecting Mycobacterium 
tuberculosis strain.2

As eff orts to improve these methods accelerate, 
investigators now have to consider how these various 
approaches will work together within a health system. 
Rapid development of resistance could occur if new drugs 
are added to failing regimens, or if combination regimens 
are used widely in populations that have substantial 
existing resistance to some of the drugs in those 
combinations. In some cases this resistance might leave 
only one eff ective drug in a regimen, increasing the 
chance of developing additional resistance and severely 
limiting the antimicrobial arsenal even further. Therefore, 
new tuberculosis regimens3 cannot be introduced without 
development of drug susceptibility testing (DST) assays 
suited to the new regimens. DST can be used to monitor 
patterns of emerging drug resistance and to direct patients 
towards appropriate therapy, but careful analysis is needed 
to establish the optimum DST strategy for each new drug 
regimen and each diff erent epidemiological context. 

The primary backbone of tuberculosis treatment has 
not changed for decades; thus, susceptibility tests for 
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Key messages

• Advances in new drug regimens and diagnostics for 
tuberculosis, including drug susceptibility testing (DST), 
are exciting; however, strategies should be aligned to 
promote co-introduction for optimum results 

• Tuberculosis treatment should ideally be based on full 
information about drug susceptibility of the infecting 
strain; however, at least in the short term and in 
resource-limited settings, less comprehensive DST might 
be more feasible or advisable in some countries; potential 
gains from DST should be balanced against costs, 
complexity, and predicted loss to follow-up

• DST and drug resistance surveillance are particularly 
important for existing and repurposed drugs, such as 
pyrazinamide and fl uoroquinolones, that are being tested 
in fi rst-line regimens and for which resistance already exists

• DST should be rapid to maximise patient retention and 
ensure prompt treatment with eff ective regimens, thus 
minimising the generation and spread of resistance; a 
rapid DST assay will probably need to detect molecular, 
rather than phenotypic, correlates of resistance

• To improve molecular tests, further research is needed to 
establish the genetic basis for resistance to existing and 
new drugs and to link each mutation with clinical eff ect; 
surveillance is needed to establish the background level of 
resistance

• This information can be used by modellers to assess the 
potential eff ectiveness of diff erent scenarios of drug and 
diagnostic introduction; by product developers to better 
defi ne product specifi cations; and by country 
programmes and providers to better assess whether, and 
how, to adopt new products
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additional drugs have not received much attention.4 But 
regimens with new tuberculosis drugs will change 
priorities for DST and drug resistance surveillance. 
Resistance against drugs in new fi rst-line regimens will 
be particularly important to test for, especially since 
existing tuberculosis drugs are easily available in the 
private sector—in large volumes, and with little or no 
regulation—in many high tuberculosis burden 
countries.5

Through the Tuberculosis Diagnostics Research 
Forum, several partners are working to ensure that the 
necessary DST assays are developed in time for co-
implementation with new tuberculosis drug regimens. 
The aim is to develop a framework for designing DST for 
new regimens. Such DST should meet at least the same 
performance criteria as DST for existing fi rst-line 
therapy. The ultimate goal is to have suffi  cient infor-
mation—including prevalence of existing resistance—so 
that all patients with tuberculosis can be confi dent that 
their regimen will be safe and eff ective. 

To reach these goals, translational science is needed to 
provide the basis for molecular diagnostics development. 
Furthermore, surveillance data and modelling are needed 
to design DST protocols and to guide decisions on 
regimen changes. And, in countries where the 
surveillance and modelling show that DST assays are 
necessary, development and use of these assays are 
needed to guide clinical decision making for individual 
patients. In this Series paper, we discuss alignment of 
new tuberculosis regimens and tuberculosis DST, and we 
outline the actions needed for the optimum, coordinated 
introduction of new technologies for tuberculosis 
control.

Tuberculosis regimens: past, present, and future 
First-line tuberculosis treatment has gradually evolved 
from monotherapy with streptomycin, to multidrug 
regimens of up to 24 months or more, and fi nally to the 
so-called short-course regimen now used in most high-
burden countries.6 This regimen is a 6 month course of 
treatment denoted as 2HRZE/4HR: a 2 month intensive 
phase of isoniazid (H), rifampicin (R), pyrazinamide (Z), 
and ethambutol (E) followed by a 4 month continuation 
phase of isoniazid and rifampicin. It has been the global 
standard fi rst-line tuberculosis treatment for decades. 

The duration of the 6 month regimen puts substantial 
demands on health-care systems and patients.7,8 
Meanwhile, second-line tuberculosis treatment, for 
patients with multidrug-resistant (MDR) tuberculosis 
(defi ned by resistance to both isoniazid and rifampicin), 
is based only on observational studies and expert 
opinion.9 These multidrug regimens of 18–24 months 
are toxic, expensive, and of limited eff ectiveness.10 The 
inadequacy of these regimens, which has become 
increasingly evident as more people are diagnosed with 
MDR tuberculosis, has led to eff orts to fi nd and develop 
new tuberculosis drug regimens that would shorten 

fi rst-line treatment, avoid drug–drug interactions with 
antiretroviral therapy, and improve second-line 
treatment.3,11

Two phase 3 trials of shorter duration fi rst-line 
tuberculosis treatment have now completed patient 
enrolment and treatment. The OFLOTUB trial12 
replaced ethambutol with the fl uoroquinolone 
gatifl oxacin in a 4 month regimen, although gatifl oxacin 
has subsequently lost regulatory approval in many 
countries because of adverse events. The REMoxTB 
trial13 replaced either isoniazid or ethambutol with the 
fl uoroquinolone moxifl oxacin (M) in two experimental, 
4 month regimens (2HRZM/2HRM and 2MRZE/2MR). 
Results from REMoxTB are expected in late 2013; if 
positive, regulatory approval will be sought in 2014 and 
a national launch could start as early as 2015. 

Next-generation, fi rst-line regimens are likely to 
include several new drugs.14 Clinically, the most advanced 
regimen15,16 in this category is known as PaMZ, a 
combination of the novel nitroimidazo-oxazine PA-824, 
moxifl oxacin, and pyrazinamide. This regimen has the 
potential not only to shorten the duration of fi rst-line 
treatment, but also to treat a proportion of patients who 
would previously have needed second-line treatment—
ie, patients with MDR tuberculosis.17 

Finally, several tuberculosis drug candidates are in 
clinical development, but their optimised regimens have 
not yet been defi ned. Sutezolid (PNU-100480), an 
analogue of linezolid, is in phase 2a trials. More advanced 
are two new drugs that have been submitted for 
regulatory approval for treatment of MDR tuberculosis 
on the basis of phase 2b data. Bacterial burden was 
reduced more quickly when either bedaquiline (a 
diarylquinoline formerly known as TMC207)18 or 
delamanid (a nitro-dihydro-imidazooxazole formerly 
known as OPC-67683)19 was added, for 6 months, to an 
optimised background regimen for MDR tuberculosis.18,19 
Bedaquiline was granted marketing approval by the US 
Food and Drug Administration on Dec 28, 2012. However, 
the extent to which these drugs can shorten and simplify 
MDR tuberculosis treatment will only be known after 
additional, multiyear phase 3 trials.

Tuberculosis diagnostics and DST: past and 
present practice
For decades, tuberculosis diagnosis in high-burden 
countries has relied almost entirely on smear microscopy, 
which is inexpensive but detects only half of all cases.10 
Additionally, smear microscopy does not provide any 
information about drug resistance, so most patients are 
put directly onto a standardised fi rst-line regimen without 
any knowledge of drug susceptibility. However, the 
increasing awareness of MDR tuberculosis20 has drawn 
greater attention to the need for DST, with the initial focus 
on rifampicin DST for the diagnosis of MDR tuberculosis.

DST results are more likely to reach patients in a 
timely fashion when the DST technology allows for 
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implementation in simpler, more peripheral health-care 
settings that are closer to patients (table). The simplest 
health-care technologies might be suitable for the most 
peripheral settings (community level and health posts), 
but more complex technologies will be appropriate only 
for higher-level facilities—ie, health centres, subdistrict 
facilities, and larger district, provincial, and regional 
hospitals. The most technically demanding methods 
might be feasible only at the most centralised, national-
level facilities (one or more of which typically operate as 
a reference laboratory for quality assurance).

New DST assays have been moving down this 
continuum; early assays were suitable only for 
centralised sites, but newer technologies are able to be 
used at more intermediate or peripheral sites. 
Development and fi eld testing have led WHO to 
recommend automated liquid culture systems (in 2007), 
line-probe assays (in 2008), and the Xpert MTB/RIF test 
(in 2010). These systems off er benefi ts such as reduced 
time to detection of resistance (from eff ectively 106 days 
with conventional DST to 20 days with line-probe assay 
and less than 1 day with the Xpert MTB/RIF assay),21 
thus allowing for more rapid initiation of MDR 
tuberculosis treatment.22–24 Liquid culture and line-probe 
assays can be implemented in national and regional 
reference laboratories, and the Xpert MTB/RIF assay 
(an automated, cartridge-based, real-time PCR assay) in 
more peripheral sites such as subdistrict laboratories. 

Before more recent developments, the primary 
method for tuberculosis DST involved the culturing of 
M tuberculosis; these phenotypic growth assays are slow 
and need sophisticated facilities with high bio-
containment. For some MDR tuberculosis drugs, even 

phenotypic DST is not well established, and will need to 
be further researched because data are insuffi  cient to 
calculate clinically relevant threshold concentrations.25 
Other phenotypic (growth-based) diagnostics, such as 
the microscopic observation drug-susceptibility assay 
and the nitrate reductase assay, might be an interim 
solution for resource-limited settings.26 However, due to 
the very slow growth of M tuberculosis in phenotypic 
assays, truly rapid testing needs a molecular approach 
that avoids the need to grow M tuberculosis and instead 
uses molecular biology methods to detect resistance-
associated mutations in DNA. Such molecular assays 
are the primary focus of this Series paper.

Line-probe assays, though molecular, also present 
challenges. As with liquid culture, they need laboratory 
infrastructure that is not available at the periphery of the 
health-care system (eg, at health centres, district hospitals, 
or even most provincial hospitals), so they are not 
practical for routine testing of all individuals with 
confi rmed or suspected tuberculosis in most high-burden 
countries.27 Such a step would need a massive sputum 
sample referral and transport system that typically does 
not exist. Instead, cultures and line-probe assays are used 
largely for patients at high risk of resistance—eg, those 
with persistent symptoms. 

The Xpert MTB/RIF test, however, has great potential 
because it can be used at the district or subdistrict level.28 
It not only detects rifampicin resistance, but also detects 
far more tuberculosis cases than does smear microscopy, 
particularly in regions where many people are co-infected 
with HIV and tuberculosis.21 As a result, the Xpert MTB/
RIF assay has been scaled up rapidly in South Africa, 
where it is used as the fi rst diagnostic for all individuals 

DST in centralised laboratories (status quo for most 
high-burden countries)

DST in peripheral settings (eg, microscopy centres or district 
laboratories)

Technology requirements Advantage: centralised laboratories allow for deployment 
of high-throughput, sophisticated assays (eg, microarrays, 
DNA sequencing, beacons, real-time PCR); these methods 
might be better suited to assaying many mutations and 
more drugs

Disadvantage: this setting might constrain technology to simpler 
platforms, which might not be ideal for new drugs or the addition 
of more drugs or mutations; the accompanying sample preparation 
technique should not need a laboratory with high levels of 
biocontainment

Cost Advantage: centralised DST can be used only for 
subpopulations of patients, reducing volume and costs; 
samples can be batched to further increase cost effi  ciency

Disadvantage: DST assays for peripheral settings might be more 
expensive and not cost effi  cient (lower test volume); the overall 
cost of tuberculosis diagnosis might increase and health systems 
could be unwilling to make such big investments, unless MDR 
tuberculosis prevalence is very high

Quality Advantage: quality testing and reliable results are easier to 
ensure in a small number of centralised laboratories 

Disadvantage: unless very simple or automated, DST in the 
periphery will need extensive quality assurance, training, and 
personnel

Timeliness and use of 
results

Disadvantage: turnaround times are too long and losses to 
follow-up are high, both with samples sent and patients 
who never come back for results; DST results are often not 
reviewed when they become available, and many results 
never get reported or used

Advantage: if universal DST is needed at the time of tuberculosis 
diagnosis, then it has to be done in peripheral settings where most 
tuberculosis cases are diagnosed; rapid turnaround and lower losses 
to follow-up will mean doctors can actually act on the DST results 
and modify treatment decisions; they are likely to pick up MDR 
tuberculosis much earlier, before substantial transmission occurs

Sample transport and 
reporting system

Disadvantage: needs good sample transport and a 
reporting system, which is not available in many settings

Advantage: does not need an extensive sample transport and 
reporting system

DST=drug susceptibility testing. MDR=multidrug-resistant. 

Table: Advantages and disadvantages of centralised and peripheral DST

For more on the Xpert MTB/RIF 
assay see Series Lancet Infect Dis 
2013; published online March 24. 
http://dx.doi.org/10.1016/
S1473-3099(13)70008-2/
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with suspected tuberculosis. In other countries, such as 
Kenya, it is used for all HIV-infected individuals with 
suspected tuberculosis. Other resource-limited countries, 
however, still struggle with the cost,29 electricity, and 
maintenance requirements of this assay.30 Although the 
price of the Xpert technology has been reduced to under 
US$10 per cartridge, this negotiated price is not available 
to the large number5 of patients with tuberculosis in the 
private health sector in some high-burden countries.31 

The roll-out of the Xpert MTB/RIF assay has been 
associated with diffi  culties that will probably also be 
applicable to DST development for new tuberculosis 
regimens. One major issue is positive predictive value.32,33 
Even with a pooled sensitivity for rifampicin resistance of 
94% and a pooled specifi city of 98%,34 the latest iteration 
of the Xpert MTB/RIF assay has a positive predictive 
value for MDR tuberculosis of only about 50% or 67% 
when rifampicin resistance prevalence is 1% or 2%, 
respectively.32 Such resistance values are typical in new 
patients with tuberculosis, and the low positive predictive 
value results in many false positives and a substantial 
demand for confi rmatory DST.35 (Of note, however, even 
smear culture is not 100% accurate, so the true specifi city 
of the Xpert assay for rifampicin resistance might be 
higher than the initially reported 98%.) In many 
countries with low HIV or MDR tuberculosis prevalence, 
the issues of positive predictive value and costs have 
restricted the uptake of the Xpert MTB/RIF assay. 

Future needs: alignment of new drug regimens 
and new diagnostics
Selecting drugs to test and ways to test them 
Which of the new drugs are the most important targets 
for future DST? Typically, DST has focused on drugs for 
which resistance has one or more of three consequences: 
it undermines treatment eff ectiveness, it increases the 
risk of resistance amplifi cation, or it strongly predicts 
resistance to other drugs (ie, acts as a triage assay). At 
present, rifampicin DST has been prioritised to 
diagnose MDR tuberculosis.36 Evidence suggests 
isoniazid DST should also be done: substantial numbers 
of patients harbour isoniazid-resistant, rifampicin-
susceptible strains, and patients with such strains have 
reduced treatment success.37,38 For implementation of 
the 4 month regimens, DST to detect susceptibility to 
rifampicin and fl uoroquinolones will be of interest, 
especially in countries that already do DST for 
rifampicin. For the PaMZ regimen, a rapid test for 
moxifl oxacin and pyrazinamide would probably be the 
fi rst priority, because clinically signifi cant resistance to 
PA-824 has not yet been shown. Development of DST 
for PA-824 and other new drugs will be prioritised—
initially for use in surveillance—as resistance to them 
develops and their use becomes more widespread.

After deciding which drugs to test, additional 
information is needed. To be rapid and clinically useful, a 
DST assay will probably need to be molecular. Therefore, 

information about resistance mutations—and the 
correlation of those mutations with clinical outcomes—is 
needed to form the basis for such a test.

The Xpert MTB/RIF assay’s 94% sensitivity for 
detection of rifampicin resistance is only possible 
because almost every mutation contributing to 
rifampicin resistance is known and present in a short, 
defi ned DNA region. For fl uoroquinolones, however, 
incomplete knowledge of all contributing resistance 
mutations outside the quinolone-resistance determining 
regions of gyrA and gyrB means that sensitivity with 
such molecular methods would, on the basis of current 
knowledge, be limited to about 85%.26,39 As occurred 
recently for a line-probe assay for second-line drugs, 
when an assay has insuffi  cient sensitivity, it might be 
recommended for use as a rule-in test only.10,35 Sensitivity 
might be enhanced by incorporation of additional, low-
abundance mutations, but doing so might reduce 
specifi city to an unacceptable level—eg, if specifi city for 
each of fi ve independent mutations is 98%, the overall 
specifi city of a test including all fi ve mutations would be 
0·985 or 90%. Other major issues, for fl uoroquinolones 
and other drugs, are the possibility of multigenic 
resistance and the diffi  culty of detecting already-known 
mutations from a mixed population of bacilli.40 

DST for pyrazinamide poses even more challenges. 
The activation of pyrazinamide requires pH levels that 
are diffi  cult to maintain in culture media, so phenotypic 
DST for pyrazinamide is inconsistent. Analysis of the 
sequence of one resistance gene (pncA) has been 
proposed as an alternative, although this approach 
might detect only about 90% of pyrazinamide 
resistance.41 The mutations are spread along the entire 
length of the pncA gene, however, necessitating analysis 
of a fragment of roughly 700 bp. This drawback has led 
to the idea of testing for the presence of a wild-type gene 
(rather than testing for the presence of a specifi c 
mutation) as a way of ruling out resistance. In this 
approach, silent mutations, which do not confer 
resistance, would probably prevent hybridisation and 
thus yield false positives. These silent mutations, 
although rare,42 need to be better characterised by 
standardised and validated culture-based pyrazinamide 
resistance assays and incorporated into a molecular 
testing algorithm.

To minimise these limitations, one priority in 
translational science is to link gene mutations to 
phenotypic resistance (ie, the amount of drug needed to 
inhibit bacterial growth).43,44 A second priority is to 
develop strain collections (preferably sequenced45,46) that 
will assist with the testing of new diagnostic assays and 
the development of genomic databases that would predict 
drug susceptibility phenotypes. For new drugs, isolates 
that develop resistance in vitro should be stored for later 
assessment, but their clinical signifi cance will be unclear 
until resistance is noted in clinical use. Compound 
availability for such clinical assessment and data for 
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crucial breakpoints are likely to emerge only after 
regulatory approval of new tuberculosis drugs. Post-
marketing studies will be important to identify treatment 
failures and resistance mechanisms.

Surveillance: a basis for decision making
Once translational science has provided a means to 
detect resistance, the next task will be to establish 
existing or emerging resistance levels via surveillance. 
Data for global drug resistance obtained through WHO’s 
Global Project on Anti-TB Drug Resistance Surveillance 
is available from 135 of 194 member states, of which only 
63 countries have continuous surveillance systems that 
use DST.10 Generally, surveillance is restricted to 
activities that align with current rather than future 
treatment priorities. Most countries assess resistance to 
isoniazid, rifampicin, and ethambutol (pyrazinamide is 
often excluded, because of the methodological challenges 
already discussed) in new and retreated patients. 
Resistance to fl uoroquinolones is assessed only in 
patients with MDR tuberculosis because these patients 
are the only ones recommended to take fl uoroquinolones 
by WHO and the International Union Against 
Tuberculosis and Lung Diseases; however, a substantial 
amount of fl uoroquinolone use is believed to occur in 
fi rst-line tuberculosis treatment in the private sector of 
some countries.5

Such data are insuffi  cient to assess development and 
implementation priorities for new tuberculosis regimens 
and diagnostics. The key information gap for the 
REMoxTB regimens is fl uoroquinolone resistance in 
new patients. Although existing data suggest that such 
resistance is very low in most47–49 but not all50,51 countries, 
the absence of such data for most high-burden countries 
makes it diffi  cult for a country to assess the cost-
eff ectiveness of the new regimen (ie, one factor in 
deciding whether to implement) or the most appropriate 
DST algorithm (ie, how to implement). And, for PaMZ, 
pyrazinamide resistance rates in both new and MDR 
tuberculosis patients are missing. For both moxifl oxacin 
and pyrazinamide resistance, some data are available 
from clinical trials, but nationally representative data are 
sorely needed. As new drugs with new mechanisms of 
action are adopted, surveillance will also be needed to 
monitor for the development of resistance to bedaquiline, 
delamanid, and others.

For surveillance data to be meaningful, the data should 
be representative of either a national or subnational 
population, be obtained using quality-assured assays, and 
distinguish between resistance rates in new patients and 
retreated patients. Ideally, DST surveys should be linked 
with treatment outcomes and patient care (although 
methods with high quality assurance would be needed) 
and would make use of new, high-throughput molecular 
methods that would be much faster than current growth-
based assays. For example, with a suffi  cient foundation of 
mutation data,43 sequence-based assays can provide rapid 

and accurate information and, for many drugs, good 
correlation with DST obtained with liquid culture.46  

DNA sequencing—as a centralised procedure—is 
more practical for surveillance than for patient care. But 
even for surveillance, it is important to develop fast and 
safe specimen preparation, transport methods that 
maintain stability of the DNA in the specimen, and 
templates, primers, barcodes, and standardised electronic 
reporting. Such systems should improve in accuracy as 
mutations with unknown association are obtained and 
analysed; however, while this knowledge is being 
accumulated, parallel implementation of phenotypic and 
molecular assays might be needed.

Collaboration with a country undertaking a drug 
resistance survey could provide an opportunity to pilot 
the technology and develop the systems described above. 
Such a study could provide the proof of principle and the 
data to validate such a system.     

Modelling of alternative DST strategies
Drugs and diagnostics are implemented as individual 
elements of a larger, more complex tuberculosis 
management system. In the public health approach, all 
incoming patients are subdivided into just a few 
treatment pathways. Central to this management 
system are diagnostic algorithms, which consist of 
diff erent permutations of drugs to test for, the level of 
the health-care system at which the testing is done, the 
selection of the patient population eligible for testing, 
and decisions about single-step or multiple-step testing. 
At the end is a treatment decision. New regimens 
introduce several new variables to consider when 
deciding which algorithms are most eff ective, and data 
to inform this decision will be scarce at the time any 
new regimen is introduced. Mathematical models can 
be useful to guide decision making in such instances in 
which direct data are scarce.52 

Such models use existing data to simulate simplifi ed 
tuberculosis epidemics that behave according to best 
current knowledge. These models can then be used to 
project the medium-term incidence and prevalence of 
drug-resistant tuberculosis at the population level under 
various assumptions about the deployment of new 
regimens and corresponding DST.

For example, one priority question is where DST should 
be placed in treatment algorithms for various 
epidemiological and economic contexts. Clearly, the ideal 
algorithm (from a perspective of reducing drug resistance) 
is to deploy DST for all people with confi rmed or suspected 
tuberculosis, with confi rmatory testing of preliminary 
positives. Preliminary modelling has suggested that the 
so-called test-early strategy for isoniazid and rifampicin 
might be cost eff ective in areas with an underlying MDR 
tuberculosis prevalence as low as 2·1%.53 However, this 
strategy is only feasible in areas where good DST exists for 
a given regimen, resources are suffi  cient to deploy such 
DST widely, and use of DST will not greatly delay initiation 
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of treatment. Most high-burden settings therefore cannot 
consider such algorithms at this time. 

A history of previous treatment is a strong 
independent risk factor for resistance, so DST should 
be directed at these subpopulations. But when should 
DST be implemented more broadly? For large public 
health programmes in resource-limited high-burden 
countries, it might make sense to implement DST only 
when the prevalence of resistance to a given drug rises 
above a specifi c threshold. Below this level, the 
implementation challenges and issue of false positives 
outweigh the risks from undetected resistance. Above 
this level, action is needed to prevent worsening 
treatment outcomes, resistance amplifi cation, and 
increased transmission. But generally the point at 
which this threshold should be set in diff erent 
epidemiological and economic conditions is unclear—
especially when MDR tuberculosis hot spots occur 
within countries that otherwise have low overall 
prevalence.54 The answer will also vary depending on 
whether the remaining drugs in the regimen will still 
protect the person from resistance generation and 
disease progression. Modelling could help to assess 
which thresholds make sense in terms of public health 
benefi t, cost, and cost-eff ectiveness. 

Two questions have arisen in discussions of modelling 
DST in the context of new tuberculosis regimens. First, 
what would diff erent DST assays—with diff erent speed, 
accuracy, price, and technical specifi cations (ie, which 
drugs, how many mutations)—achieve in terms of a 
population-level eff ect and cost-eff ectiveness, and what 
are the trade-off s between these various specifi cations? 
Second, what is the population-level eff ect and cost-
eff ectiveness of diff erent DST algorithms (eg, DST for 
all, DST for only patients who are being re-treated or in 
whom previous treatment had failed, or use of new 
regimens without DST) as a function of baseline drug 
resistance and rate of emerging resistance?

Those deciding how to deploy DST should consider 
the projected epidemiological outcomes, budgetary 
constraints, feasibility concerns, and political realities. 
Mathematical models can assist with the fi rst of these 
(projections of potential outcomes), and thereby serve 
as an important tool for decision makers. However, 
these models are restricted by the quality of data; in 
particular, data are sparse for the extent of drug 
resistance in many high-burden areas and the rate at 
which resistance to second-line drugs (eg, 
fl uoroquinolones) might emerge under pressure from 
new regimens. Thus, even when restricted to the 
outcomes issue, mathematical models cannot validate 
which assumptions about emergence of drug resistance 
are correct. However, they can project epidemiological 
outcomes under best-guess assumptions of these data-
points, describe the range of uncertainty, emphasise the 
data for which surveillance is most crucial as new 
regimens are deployed, and provide preliminary 

guidance in line with current knowledge while those 
data are obtained.

Development of new DST assays
Information about resistance rates (from surveillance) 
and algorithm choice (from modelling) can directly 
inform the fi nal question: what new DST assays need to 
be developed? A target product profi le (TPP) is a list of 
product specifi cations, including projected product 
performance and target patient population. The TPP of a 
DST assay will vary depending on the intended use 
(individual treatment decisions vs surveillance), the 
epidemiology (detecting low vs high resistance), the 
health-system context (where it is positioned in possible 
algorithms), and whether the technology will be used in 
central or peripheral settings. 

Example TPPs and DST approaches have been described 
elsewhere.55,56 Beyond the target drug(s), these TPPs should 
address several issues: what is meant by rapid; what level 
of sensitivity and specifi city a DST assay needs for it to be 
practical and feasible; what other diseases should be able 
to use the same DST platform technology; and what level 
of complexity, containment, and cost are needed. 

But two related issues stand out. First, should DST be 
bundled into case-detection assays (as with the Xpert 
MTB/RIF assay), or should it be a refl ex test that is done 
only after tuberculosis is diagnosed? Of the two 
approaches, refl ex testing needs more patient samples  
(and potentially more patient visits, with associated loss 
to follow-up and delays in treatment initiation). But refl ex 
testing means that only patients with confi rmed, rather 
than suspected, tuberculosis undergo DST, which can 
greatly reduce costs. 

Second, new DST assays could be developed for 
deployment at either centralised laboratories or the more 

Panel 1: Diagnostics developers’ requirements beyond 
target product profi les63

Potential market size
• Size of the target population
• Market reach of competing drug susceptibility testing 

technologies
• Diagnostic algorithms used now and in the future; current 

and future tuberculosis treatment landscape
• Segmentation of markets by income and by peripheral 

versus centralised methods
• Projected scale-up dynamics

Practical steps 
• Sources of funding and technical support, especially for 

validation trials
• Whether validation trials can address only accuracy or also 

have to show clinical eff ect
• Requirements for regulatory and policy approvals
• Potential procurement and scale-up challenges at the 

country level
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peripheral levels of the health-care system (table). Emerging 
technologies for DST are abundant—including micro-
arrays, next-generation sequencing, line-probe assays, 
molecular beacons, high-resolution melt curve analysis, 
lights on/lights off  technology, cyclic catcher melt 
temperature analysis, phenotypic colour tests, pyrazin-
amidase assays, and combination phage and molecular 
assays—and some of these technologies can be readily 
adapted to increase the number of mutations detected, but 
few are suited to use in peripheral laboratories. 

Therefore, investment will be needed either to develop 
cost-eff ective and robust DST methods for peripheral 
laboratories, or to create rapid, reliable sample transport 
systems to support centralised DST (along with mobile-
health and patient-incentive solutions to reduce delays 
and dropouts). Deployment of testing at the point of 
treatment can bring obvious advantages, such as reduced 
delay and dropout, but can add substantially to the overall 
cost because of the many instruments needed and the 
lower volumes of testing per site.57 

Many countries diagnose drug-sensitive tuberculosis at 
the peripheral levels of the health system, but initiate 
treatment at the subdistrict level. Therefore, a 
compromise might be to have a new, sensitive case-
detection assay as a true point-of-care assay, followed by 
DST given as a refl ex assay at subdistrict level at the time 
of treatment initiation.

If non-centralised DST remains the strategy, simplicity 
should be a major goal.58 Simplifi ed smear microscopy 
algorithms provide an interesting example of how up-
front performance (in this case, sensitivity) is sometimes 
worth sacrifi cing in return for a protocol that is simpler 
for the patient (with lower travel costs) and that therefore 
is associated with less dropout and better overall 
eff ectiveness.59,60 Modelling studies61,62 have already 
resulted in similar conclusions for new diagnostics. 
Improved assay sensitivity provides some epidemiological 
gains, but the greater population eff ect comes from a 
focus on test specifi cations that allow peripheral use and 
fast turnaround times, thus reducing patient delays and 
default.61,62 

One option for a peripheral laboratory test is to focus 
on excluding all patients who are likely to be resistant; 
high sensitivity becomes the goal and specifi city 
becomes less important. A test with lower specifi city can 
be acceptable if the prevalence of resistance is high, if an 
eff ective and safe alternative regimen (eg, 2HRZE/4RH 
for PaMZ) is available, or if used as a triage test. One 
example of an approach that prioritises sensitivity is the 
proposed molecular assay  to screen for the wild-type 
pncA gene as a correlate for pyrazinamide susceptibility, 
rather than trying to capture the many diff erent pncA 
mutations that can lead to pyrazinamide resistance. 
Another option is to continue—even with new 
regimens—to focus on rifampicin resistance screening 
as a fi rst step. Preliminary evidence17 suggests that 
rifampicin-resistant strains are more likely than 

rifampicin-sensitive strains to be resistant to 
pyrazinamide and fl uoroquinolones. Therefore, DST for 
rifampicin might be a useful triage test even if the fi rst-
line regimen does not contain rifampicin (eg, PaMZ). 
The subsequent pyrazinamide and fl uoroquinolone DST 
could then be restricted to a smaller population with a 
higher prevalence of resistance.

All of this theory is irrelevant unless companies invest 
in the development and testing of new tuberculosis 
diagnostics. These developers should be aware of what is 
needed in resource-limited settings and be willing to take 
a product all the way through fi eld testing to 

Panel 2: Framework to achieve successful implementation of new tuberculosis 
regimens and drug susceptibility testing (DST)

Short term
• Identify all mutations in Mycobacterium tuberculosis that occur reasonably frequently 

and that result in resistance to existing and new drugs; priority should be placed on 
obtaining resistance information from clinical samples that are accompanied by 
treatment outcome data

• Develop a collection of sequenced sensitive and resistant strains that can be used to 
assess new DST assays

• Use modelling to defi ne which strategies for deployment of DST will have the greatest 
population-level eff ect and be most cost eff ective; various strategies would include 
diff erent DST assays that vary in their speed, sensitivity and specifi city, cost, and 
technical specifi cations and diff erent DST algorithms, used in the context of various 
baseline resistance levels

• Undertake surveillance of moxifl oxacin resistance in new patients with tuberculosis 
and of pyrazinamide resistance in new and previously treated patients, and patients 
with and without multidrug-resistant tuberculosis

• Do operational research to assess and optimise systems for sputum transport and 
reporting results (including prompt initiation of treatment in response)

• Develop clear target product profi les to guide diagnostics developers about the 
necessary product specifi cations and likely market demand

• Do analyses of the tuberculosis diagnostics market size and potential to inform 
investment decisions by test developers

Medium term
• Use existing diagnostics platforms to develop, fi eld test, and commercialise DST 

assays—particularly for fl uoroquinolones and pyrazinamide—that can be 
implemented at the subdistrict level

• Monitor for clinical resistance generated during the roll-out of new tuberculosis drugs 
(ie, new chemical entities) and identify the molecular basis for such resistance 

• Refi ne models of long-term impact based on early surveillance data during roll-out of 
novel regimens

• Develop DST assays for new tuberculosis drugs and use them to do ongoing 
surveillance

• Develop and strengthen systems for using next-generation sequencing for 
tuberculosis drug surveillance

Long term
• Develop new diagnostic platforms that are rapid, inexpensive, and can be 

implemented at the subdistrict level
• Develop a universal regimen for tuberculosis that has at least three novel chemical 

entities and that therefore minimises the need for DST while treating all forms of 
tuberculosis
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commercialisation. The perception that these assays 
have little commercial opportunity is a substantial barrier 
to development, and supportive fi nancing will probably 
still be needed. In addition to the TPP issues listed 
previously, diagnostics developers are interested in 
potential market size and the practical steps needed for 
test development, validation, regulation, and policy 
(panel 1).63 

Developers targeting surveillance have a particularly 
small market, although the barrier to entry is much 
lower because these high-throughput, centralised 
machines can be built on the presumption that users 
will have a high level of skill and that the machine will 
have applications beyond tuberculosis. For developers 
interested in peripheral DST for patient care, the 
demands in terms of assay simplifi cation and robustness 
increase greatly, and market size is very dependent on 
the resistance thresholds for testing. Test developers 
might therefore be more interested in a product that 
combines tuberculosis detection and DST because this 
product will have a larger market than a DST-only 
product.

Private sector procurement is a major strategic gap. If 
new DST assays are highly priced, few private 
practitioners will use them, and DST will be missing 
from the sector that is most likely to adopt new drugs 
quickly and in the context of variable regimens. To solve 
this issue, a mechanism is needed to ensure that private 
laboratories pass along any savings from assays 
purchased at concessionary prices.

Although demonstration projects for diagnostics need 
substantial investment, assay development with existing 
platforms can be cheap by comparison. But even to 
make these investments, diagnostic companies need a 
prediction of user needs (where the user is often a 
national tuberculosis programme) and market demand. 
Defi ning a clear set of specifi cations for the desired 
DST—and the likely demand for such DST—is the next 
major point of collaboration for drug and diagnostic 
developers.

Conclusion 
The prospect of new tuberculosis regimens is exciting, 
because patients have had to rely on a single lengthy 
treatment option for decades. Several opportunities are 
available to mitigate the risks of developing resistance 
to these new regimens. Assays to detect resistance can 
be developed before repurposed drugs come to market 
and early in the implementation of new drugs. 
Surveillance DST can identify areas where some 
regimens might be compromised by high levels of 
background resistance, and treatment decisions can, in 
some settings, be tailored to the individual by rapid DST 
before treatment. Modelling studies will help to assess 
costs, outcomes, and feasibility to predict im-
plementation approaches. Panel 2 outlines a framework 
to achieve these goals. W hen all of these strategies are 
brought to bear, drugs and diagnostics will together 
make a powerful combination.

Contributors
AZ and MS initiated this Series paper. WAW led the writing of the paper, 

and all authors contributed equally. 

Members of the Tuberculosis Diagnostics Research Forum 
The decision to submit the report for publication was made by the 

primary authors, who also drafted the manuscript text. However, ideas 

also arose from discussion at a meeting (see Search strategy and 

selection criteria). Attendees at this meeting included: David Alland 

(New Jersey Medical School, Newark, NJ, USA); Naomi Aronson 

(Uniformed Services University of the Health Sciences, Bethesda, MD, 

USA); Helena Boshoff  (National Institutes of Health [NIH], Bethesda, 

MD, USA); Ted Cohen (Brigham and Women’s Hospital/Harvard 

School of Public Health, Boston, MA, USA); Luke T Daum (Longhorn 

Vaccines and Diagnostics, San Antonio, TX, USA); Nila Dharan 

(University of Medicine and Dentistry of New Jersey, Newark, NJ, 

USA); David L Dolinger (Seegene, Gaithersburg, MD, USA); 

Matthias Egger (University of Bern, Bern, Switzerland); 

Kathleen Eisenach (University of Arkansas for Medical Sciences, Little 

Rock, AR, USA); Diane Flayhart (Becton Dickinson, Franklin Lakes, 

NJ, USA); Michael Hoelscher (University of Munich, Munich, 

Germany); Sven Hoff ner (Swedish Institute for Communicable 

Disease Control, Solna, Sweden); Eric Houpt (University of Virginia, 

Charlottesville, VA, USA); Robin Huebner (NIH); Patrick Jean-Philippe 

(Henry M Jackson Foundation and NIH, Bethesda, MD, USA); 

Lee Pyne-Mercier (Bill & Melinda Gates Foundation, Seattle, WA, 

USA); Timothy Rodwell (University of California, San Diego, CA, 

USA); Christine Sizemore (NIH); Sudha Srinivasan (NIH); 

Faramarz Valafar (San Diego State University, San Diego, CA, USA); 

Richard White (London School of Hygiene and Tropical Medicine, 

London, UK), and Sharon Williams (NIH). 

Confl icts of interest
WAW, EG, and KM are employed by the TB Alliance, whose mission is 

to develop new, improved regimens for tuberculosis. FGJC serves as a 

consultant to the Foundation for Innovative New Diagnostics (FIND). 

FGJC and MP serve as consultants for the Bill & Melinda Gates 

Foundation. All the other authors declare that they have no confl icts of 

interest.

Acknowledgments
This project has been funded in part with federal funds from the 

National Institute of Allergies and Infectious Diseases, National 

Institutes of Health, Department of Health and Human Services, under 

contract number HHSN272200800014C. TB Alliance is funded by the 

Bill & Melinda Gates Foundation, European Commission, Irish Aid, 

National Institute of Allergy and Infectious Diseases, UK Department 

for International Development, UNITAID, US Agency for International 

Development, and the US Food and Drug Administration. The opinions 

expressed herein are those of the authors and do not refl ect the offi  cial 

Search strategy and selection criteria

This Series paper draws on material from a meeting of the 
Tuberculosis Diagnostics Research Forum sponsored by the 
Bill & Melinda Gates Foundation and the US National 
Institutes of Health held on Oct 1–2, 2012, in Arlington, VA, 
USA. Additionally, we identifi ed references for this review by 
searching PubMed with a focus on articles published between 
January, 2008, and November, 2012. Search terms included, 
but were not restricted to, “tuberculosis”, “drug susceptibility 
testing”, “drugs”, “diagnostics”, “drug resistance”, 
“surveillance”, and “point-of-care testing”. We did not apply 
language restrictions. Additional information came from our 
personal collections of peer-reviewed papers, from the 
reference lists of identifi ed papers, and from reviewers.



www.thelancet.com/infection   Published online March 24, 2013   http://dx.doi.org/10.1016/S1473-3099(13)70025-2 9

Series

policies of the US Department of Health and Human Services or the 

authors’ national governments, nor does mention of trade names, 

commercial practices, or organisations imply endorsement by the US 

Government or the authors’ national governments.  

References
1 Raviglione M, Marais B, Floyd K, et al. Scaling up interventions to 

achieve global tuberculosis control: progress and new 
developments. Lancet 2012; 379: 1902–13.

2 Stop TB Partnership. Introducing new approaches and tools for 
enhanced TB control (INAT) subgroup. http://www.stoptb.org/wg/
dots_expansion/inatabout.asp (accessed Nov 23, 2010).

3 Ma Z, Lienhardt C, McIlleron H, Nunn AJ, Wang X. Global 
tuberculosis drug development pipeline: the need and the reality. 
Lancet 2010; 375: 2100–09.

4 Wells WA, Konduri N, Chen C, et al. TB regimen change in the 
high burden countries. Int J Tuberc Lung Dis 2010; 14: 1538–47.

5 Wells WA, Ge CF, Patel N, Oh T, Gardiner E, Kimerling ME. Size 
and usage patterns of private TB drug markets in the high burden 
countries. PLoS One 2011; 6: e18964.

6 Fox W, Ellard GA, Mitchison DA. Studies on the treatment of 
tuberculosis undertaken by the British Medical Research Council 
tuberculosis units, 1946–1986, with relevant subsequent 
publications. Int J Tuberc Lung Dis 1999; 3 (suppl 2): S231–79.

7 Stop TB Partnership and WHO. Global plan to stop TB 2006–2015. 
Report No.: WHO/HTM/STB/2006.35. Geneva: World Health 
Organization, 2006.

8 TB Alliance. New TB regimens: what countries want. The value 
proposition of existing and new fi rst-line regimens for 
drug-susceptible tuberculosis: New York: Global Alliance for TB 
Drug Development, 2009.

9 WHO. Guidelines for the programmatic management of 
drug-resistant tuberculosis—2011 update. Geneva: World Health 
Organization, 2011.

10 WHO. Global tuberculosis report 2012. Geneva: World Health 
Organization, 2012.

11 Grosset JH, Singer TG, Bishai WR. New drugs for the treatment of 
tuberculosis: hope and reality. Int J Tuberc Lung Dis 2012; 16: 1005–14.

12 ClinicalTrials.gov. A controlled trial of a 4-month quinolone-containing 
regimen for the treatment of pulmonary tuberculosis. http://
clinicaltrials.gov/ct2/show/NCT00216385 (accessed Feb 12, 2013). 

13 ClinicalTrials.gov. Controlled comparison of two moxifl oxacin 
containing treatment shortening regimens in pulmonary 
tuberculosis (REMoxTB). http://clinicaltrials.gov/ct2/show/
NCT00864383 (accessed Feb 12, 2013).

14 Williams K, Minkowski A, Amoabeng O, et al. Sterilizing activities 
of novel combinations lacking fi rst- and second-line drugs in a 
murine model of tuberculosis. Antimicrob Agents Chemother 2012; 
56: 3114–20.

15 Diacon AH, Dawson R, von Groote-Bidlingmaier F, et al. 14-day 
bactericidal activity of PA-824, bedaquiline, pyrazinamide, and 
moxifl oxacin combinations: a randomised trial. Lancet 2012; 
380: 986–93.

16 ClinicalTrials.gov. Evaluation of 8 weeks of treatment with the 
combination of moxifl oxacin, PA-824 and pyrazinamide in patients 
with drug sensitive and multi drug-resistant pulmonary 
tuberculosis (TB). http://clinicaltrials.gov/ct2/show/NCT01498419?t
erm=NCT01498419&rank=1 (accessed Jan 13, 2013).

17 Diacon AH, Donald PR, Mendel CM. Early bactericidal activity of new 
regimens for tuberculosis—authors’ reply. Lancet 2013; 381: 112–13.

18 Diacon AH, Donald PR, Pym A, et al. Randomized pilot trial of 
eight weeks of bedaquiline (TMC207) treatment for multidrug-
resistant tuberculosis: long-term outcome, tolerability, and eff ect on 
emergence of drug resistance. Antimicrob Agents Chemother 2012; 
56: 3271–76.

19 Gler MT, Skripconoka V, Sanchez-Garavito E, et al. Delamanid for 
multidrug-resistant pulmonary tuberculosis. N Engl J Med 2012; 
366: 2151–60.

20 Zhao Y, Xu S, Wang L, et al. National survey of drug-resistant 
tuberculosis in China. N Engl J Med 2012; 366: 2161–70.

21 Boehme CC, Nicol MP, Nabeta P, et al. Feasibility, diagnostic 
accuracy, and eff ectiveness of decentralised use of the Xpert MTB/
RIF test for diagnosis of tuberculosis and multidrug resistance: 
a multicentre implementation study. Lancet 2011; 377: 1495–505.

22 Shin SS, Asencios L, Yagui M, et al. Impact of rapid drug 
susceptibility testing for tuberculosis: program experience in Lima, 
Peru. Int J Tuberc Lung Dis 2012; 16: 1538–43.

23 Jacobson KR, Theron D, Kendall EA, et al. Implementation of 
GenoType MTBDRplus reduces time to multidrug-resistant 
tuberculosis therapy initiation in South Africa. Clin Infect Dis 
2013; 56: 503–08.

24 Barnard M, Warren R, Van Pittius NG, et al. GenoType MTBDRsl 
line probe assay shortens time to diagnosis of XDR-TB in a 
high-throughput diagnostic laboratory. Am J Respir Crit Care Med 
2012; 186: 1298–305.

25 WHO. Policy guidance on drug-susceptibility testing (DST) of 
second-line antituberculosis drugs. Geneva: World Health 
Organization, 2008.

26 Drobniewski F, Nikolayevskyy V, Balabanova Y, Bang D, 
Papaventsis D. Diagnosis of tuberculosis and drug resistance: 
what can new tools bring us? Int J Tuberc Lung Dis 2012; 
16: 860–70.

27 Van Deun A, Martin A, Palomino JC. Diagnosis of drug-resistant 
tuberculosis: reliability and rapidity of detection. 
Int J Tuberc Lung Dis 2010; 14: 131–40.

28 Lawn SD, Mwaba P, Bates M, et al. Advances in tuberculosis 
diagnostics: the Xpert MTB/RIF assay and future prospects for a 
point-of-care test. Lancet Infect Dis 2013; published online March 24. 
http://dx.doi.org/10.1016/S1473-3099(13)70008-2.

29 Meyer-Rath G, Schnippel K, Long L, et al. The impact and cost of 
scaling up GeneXpert MTB/RIF in South Africa. PLoS One 2012; 
7: e36966.

30 Evans CA. GeneXpert—a game-changer for tuberculosis control? 
PLoS Med 2011; 8: e1001064.

31 Pai M, Palamountain KM. New tuberculosis technologies: 
challenges for retooling and scale-up. Int J Tuberc Lung Dis 2012; 
16: 1281–90.

32 WHO. Rapid implementation of the Xpert MTB/RIF diagnostic 
test: technical and operational ‘how-to’—practical considerations. 
Geneva: World Health Organization, 2011.

33 Trebucq A, Enarson DA, Chiang CY, et al. Xpert(R) MTB/RIF for 
national tuberculosis programmes in low-income countries: when, 
where and how? Int J Tuberc Lung Dis 2011; 15: 1567–72.

34 Steingart KR, Sohn H, Schiller I, et al. Xpert® MTB/RIF assay for 
pulmonary tuberculosis and rifampicin resistance in adults. 
Cochrane Database Syst Rev 2013; 1: CD009593.

35 WHO. The use of molecular line probe assay for the detection of 
resistance to second-line anti-tuberculosis drugs. Geneva: World 
Health Organization, 2013.

36 Moore DA, Shah NS. Alternative methods of diagnosing drug 
resistance—what can they do for me? J Infect Dis 2011; 
204 (suppl 4): S1110–19.

37 Gegia M, Cohen T, Kalandadze I, Vashakidze L, Furin J. Outcomes 
among tuberculosis patients with isoniazid resistance in Georgia, 
2007–2009. Int J Tuberc Lung Dis 2012; 16: 812–16.

38 Menzies D, Benedetti A, Paydar A, et al. Eff ect of duration and 
intermittency of rifampin on tuberculosis treatment outcomes: a 
systematic review and meta-analysis. PLoS Med 2009; 6: e1000146.

39 Malik S, Willby M, Sikes D, Tsodikov OV, Posey JE. New insights 
into fl uoroquinolone resistance in Mycobacterium tuberculosis: 
functional genetic analysis of gyrA and gyrB mutations. PLoS One 
2012; 7: e39754.

40 de Oliveira MM, da Silva Rocha A, Cardoso Oelemann M, et al. 
Rapid detection of resistance against rifampicin in isolates of 
Mycobacterium tuberculosis from Brazilian patients using a 
reverse-phase hybridization assay. J Microbiol Methods 2003; 
53: 335–42.

41 Chang KC, Yew WW, Zhang Y. Pyrazinamide susceptibility testing 
in Mycobacterium tuberculosis: a systematic review with 
meta-analyses. Antimicrob Agents Chemother 2011; 55: 4499–505.

42 Jureen P, Werngren J, Toro JC, Hoff ner S. Pyrazinamide resistance 
and pncA gene mutations in Mycobacterium tuberculosis. 
Antimicrob Agents Chemother 2008; 52: 1852–54.

43 Campbell PJ, Morlock GP, Sikes RD, et al. Molecular detection of 
mutations associated with fi rst- and second-line drug resistance 
compared with conventional drug susceptibility testing of 
Mycobacterium tuberculosis. Antimicrob Agents Chemother 2011; 
55: 2032–41.



10 www.thelancet.com/infection   Published online March 24, 2013   http://dx.doi.org/10.1016/S1473-3099(13)70025-2

Series

44 Angeby K, Jureen P, Kahlmeter G, Hoff ner SE, Schon T. Challenging 
a dogma: antimicrobial susceptibility testing breakpoints for 
Mycobacterium tuberculosis. Bull World Health Organ 2012; 90: 693–98.

45 Walker TM, Ip CLC, Harrell RH, et al. Whole-genome sequencing 
to delineate Mycobacterium tuberculosis outbreaks: a retrospective 
observational study. Lancet Infect Dis 2013; 13: 137–46.

46 Daum LT, Rodriguez JD, Worthy SA, et al. Next-generation ion 
torrent sequencing of drug resistance mutations in Mycobacterium 
tuberculosis strains. J Clin Microbiol 2012; 50: 3831–37.

47 Bozeman L, Burman W, Metchock B, Welch L, Weiner M. 
Fluoroquinolone susceptibility among Mycobacterium tuberculosis 
isolates from the United States and Canada. Clin Infect Dis 2005; 
40: 386–91.

48 Huang TS, Kunin CM, Shin-Jung Lee S, Chen YS, Tu HZ, Liu YC. 
Trends in fl uoroquinolone resistance of Mycobacterium tuberculosis 
complex in a Taiwanese medical centre: 1995–2003. 
J Antimicrob Chemother 2005; 56: 1058–62.

49 Umubyeyi AN, Rigouts L, Shamputa IC, et al. Limited 
fl uoroquinolone resistance among Mycobacterium tuberculosis 
isolates from Rwanda: results of a national survey. 
J Antimicrob Chemother 2007; 59: 1031–33.

50 Verma JS, Nair D, Rawat D, Manzoor N. Assessment of trends of 
ofl oxacin resistance in Mycobacterium tuberculosis. 
Indian J Med Microbiol 2011; 29: 280–82.

51 Skrahina A, Hurevich H, Zalutskaya A, et al. Alarming levels of 
drug-resistant tuberculosis in Belarus: results of a survey in Minsk. 
Eur Respir J 2012; 39: 1425–31.

52 Garnett GP, Cousens S, Hallett TB, Steketee R, Walker N. 
Mathematical models in the evaluation of health programmes. 
Lancet 2011; 378: 515–25.

53 Oxlade O, Falzon D, Menzies D. The impact and cost-eff ectiveness 
of strategies to detect drug-resistant tuberculosis. Eur Respir J 2012; 
39: 626–34.

54 Cohen T, Manjourides J, Hedt-Gauthier B. Linking surveillance 
with action against drug-resistant tuberculosis. 
Am J Respir Crit Care Med 2012; 186: 399–401.

55 Evidence-based tuberculosis diagnosis. Target product profi les. 
http://tbevidence.org/resource-center/target-product-profi les/ 
(accessed Sept 16, 2012).

56 Pai NP, Vadnais C, Denkinger C, Engel N, Pai M. Point-of-care 
testing for infectious diseases: diversity, complexity, and barriers in 
low- and middle-income countries. PLoS Med 2012; 9: e1001306.

57 Schnippel K, Meyer-Rath G, Long L, et al. Scaling up Xpert MTB/
RIF technology: the costs of laboratory- vs clinic-based roll-out in 
South Africa. Trop Med Int Health 2012; 17: 1142–51.

58 Cobelens F, van den Hof S, Pai M, Squire SB, Ramsay A, 
Kimerling ME. Which new diagnostics for tuberculosis, and when? 
J Infect Dis 2012; 205 (suppl 2): S191–98.

59 Mase SR, Ramsay A, Ng V, et al. Yield of serial sputum specimen 
examinations in the diagnosis of pulmonary tuberculosis: a 
systematic review. Int J Tuberc Lung Dis 2007; 11: 485–95.

60 Cuevas LE, Yassin MA, Al-Sonboli N, et al. A multi-country 
non-inferiority cluster randomized trial of frontloaded smear 
microscopy for the diagnosis of pulmonary tuberculosis. PLoS Med 
2011; 8: e1000443.

61 Lin HH, Langley I, Mwenda R, et al. A modelling framework to 
support the selection and implementation of new tuberculosis 
diagnostic tools. Int J Tuberc Lung Dis 2011; 15: 996–1004.

62 Lin HH, Dowdy D, Dye C, Murray M, Cohen T. The impact of new 
tuberculosis diagnostics on transmission: why context matters. 
Bull World Health Organ 2012; 90: 739–47A.

63 Pai M. TB diagnostics: top 10 FAQs by test developers. http://www.
tbfaqs.org/ (accessed Feb 18, 2013).

©2013. World Health Organization. Published by Elsevier Ltd/Inc/BV. 

All rights reserved.


	Alignment of new tuberculosis drug regimens and drug susceptibility testing: a framework for action
	Introduction
	Tuberculosis regimens: past, present, and future
	Tuberculosis diagnostics and DST: past and present practice
	Future needs: alignment of new drug regimens and new diagnostics
	Selecting drugs to test and ways to test them
	Surveillance: a basis for decision making
	Modelling of alternative DST strategies
	Development of new DST assays

	Conclusion
	Acknowledgments
	References


